期刊简介

               本刊创刊于1984年9月,是中华人民共和国卫生部主管,中国卫生信息学会(原中国卫生统计学会)和中国医科大学主办的全国性卫生统计专业学术性双月刊,是国内卫生统计专业的唯一学术性期刊和中国医学类中文核心期刊及国家科技部中国科技论文统计源期刊。本刊的任务是及时报道我国卫生统计学科的科研成果和卫生统计工作改革与卫生事业发展的信息。主要读者对象为各级卫生机构的卫生统计人员、卫生技术人员和高等医学院校卫生统计专业的教学和科研人员。                

首页>中国卫生统计杂志
  • 杂志名称:中国卫生统计杂志
  • 主管单位:中华人民共和国国家卫生和计划生育委员会
  • 主办单位:中国卫生信息学会 中国医科大学
  • 国际刊号:1002-3674
  • 国内刊号:21-1153/R
  • 出版周期:双月刊
期刊荣誉:中国学术期刊(光盘版)全文收录期刊期刊收录:北大核心期刊(中国人文社会科学核心期刊), 万方收录(中), 知网收录(中), JST 日本科学技术振兴机构数据库(日), 上海图书馆馆藏, 国家图书馆馆藏, 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 维普收录(中)
中国卫生统计杂志2018年第02期

基于重采样技术在医学不平衡数据分类中的应用研究

闫慈;田翔华;阿拉依·阿汗;张伟文;曹明芹

关键词:代谢综合征, 不平衡数据集, 重采样技术, 神经网络, 决策树
摘要:目的 以代谢综合征为例,探讨不平衡数据对分类算法的影响,并运用重采样技术对数据进行平衡化处理,比较神经网络、决策树的分类性能.方法 采用随机过采样、随机欠采样、混合采样和人工合成数据四种重采样技术,比较数据重采样前后及四种数据重采样间使用神经网络、决策树分类的性能,以F-Measure,G-mean和AUC作为模型评价指标.结果 (1)分类算法性能随不平衡数据集不平衡比例的加剧而降低;(2)四种重采样技术中随机过采样后作用于BP神经网络、C4.5决策树分类性能大.结论 分类性能随数据集中患病率的降低而下降.采用随机过采样提高了算法的分类性能.建议在应用分类算法对医学不平衡数据分类前,采用随机过采样技术以提高分类性能.