期刊简介
本刊创刊于1984年9月,是中华人民共和国卫生部主管,中国卫生信息学会(原中国卫生统计学会)和中国医科大学主办的全国性卫生统计专业学术性双月刊,是国内卫生统计专业的唯一学术性期刊和中国医学类中文核心期刊及国家科技部中国科技论文统计源期刊。本刊的任务是及时报道我国卫生统计学科的科研成果和卫生统计工作改革与卫生事业发展的信息。主要读者对象为各级卫生机构的卫生统计人员、卫生技术人员和高等医学院校卫生统计专业的教学和科研人员。
往期目录
-
1999
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
-
2019
首页>中国卫生统计杂志

- 杂志名称:中国卫生统计杂志
- 主管单位:中华人民共和国国家卫生和计划生育委员会
- 主办单位:中国卫生信息学会 中国医科大学
- 国际刊号:1002-3674
- 国内刊号:21-1153/R
- 出版周期:双月刊
期刊荣誉:中国学术期刊(光盘版)全文收录期刊期刊收录:北大核心期刊(中国人文社会科学核心期刊), 万方收录(中), 知网收录(中), JST 日本科学技术振兴机构数据库(日), 上海图书馆馆藏, 国家图书馆馆藏, 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 维普收录(中)
基于双层粒子群优化算法的肿瘤基因表达样本分类研究
刘亚杰;施心陵;李宝磊;苟常兴;张钦虎;黄云超
关键词:双层粒子群优化算法, 肿瘤, 基因, 分类
摘要:目的 从分子生物学的角度对不同类别肿瘤样本基因表达数据进行准确和稳定分类,为肿瘤治疗路径的选择提供分型依据.方法 给出一种基于双层粒子群优化(TLPSO)算法的肿瘤基因表达样本分类模型,选取103个肿瘤基因表达样本,包括乳腺、前列腺、肺和结肠肿瘤基因表达数据,随机选取训练集和测试集以获取不同样本组合,同时建立基于基本粒子群优化(PSO)算法用于比较研究.结果 基于TLPSO算法的分类模型获得较好分类结果,在佳分类结果数和分类结果分布两项指标上优于PSO算法.结论 双层粒子群优化算法分类模型能够对多类别肿瘤基因表达样本进行准确和稳定分类,能为临床肿瘤基因表达样本的分类定型提供依据.
友情链接