期刊简介
本刊创刊于1984年9月,是中华人民共和国卫生部主管,中国卫生信息学会(原中国卫生统计学会)和中国医科大学主办的全国性卫生统计专业学术性双月刊,是国内卫生统计专业的唯一学术性期刊和中国医学类中文核心期刊及国家科技部中国科技论文统计源期刊。本刊的任务是及时报道我国卫生统计学科的科研成果和卫生统计工作改革与卫生事业发展的信息。主要读者对象为各级卫生机构的卫生统计人员、卫生技术人员和高等医学院校卫生统计专业的教学和科研人员。
往期目录
-
1999
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
-
2019
首页>中国卫生统计杂志

- 杂志名称:中国卫生统计杂志
- 主管单位:中华人民共和国国家卫生和计划生育委员会
- 主办单位:中国卫生信息学会 中国医科大学
- 国际刊号:1002-3674
- 国内刊号:21-1153/R
- 出版周期:双月刊
期刊荣誉:中国学术期刊(光盘版)全文收录期刊期刊收录:北大核心期刊(中国人文社会科学核心期刊), 万方收录(中), 知网收录(中), JST 日本科学技术振兴机构数据库(日), 上海图书馆馆藏, 国家图书馆馆藏, 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 维普收录(中)
MLP神经网络在子宫颈细胞图像识别中的应用
何苗;全宇;李建华;付志民;周宝森
关键词:MLP神经网络, BP, 动量项, 共轭梯度法
摘要:目的 探讨MLP神经网络在宫颈细胞图像识别中的应用.方法 将测量的子宫颈细胞和细胞核的27个特征量作为MLP神经网络的输入参数,利用软件STATISTICA 7.0建立网络模型,使用四种不同的算法训练网络,对700个子宫颈细胞进行分类识别,使用VC++.NET语言模拟调用网络.结果 在四种算法中,使用共轭梯度法训练的MLP神经网络学习63次后,训练集识别率为98.67%,测试集识别率达到94.44%.不同算法的MLP神经网络的输入参数的敏感度排序均与细胞病理学特征基本一致.结论 使用共轭梯度法训练的MLP神经网络可以较好地对宫颈细胞特征进行分类识别,在计算机辅助诊断方面具有广阔的应用前景.
友情链接